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An approximation to the topocentric range rate of a spacecraft is developed

which is first order in both the time past epoch and the ratio between the dis-
tance of an observing station from the geocenter and the geocentric range. This
approximation is compared with a numerical integrated trajectory to obtain some
idea of the duration over which it may be reliable. The development is extended
to include an analytical determination of the errors in the spacecraft state produced
by errors in the range rate data. It is also shown how range data may be incor-
porated into this cursory error analysis. The partial derivatives of the gravita-
ticnal geocentric acceleration with respect to range, declination, and right
ascension are obtained analytically and shown graphically.

l. Introduction

The determination of an orbit from range and range
rate data and obtaining a measure of the accompanying
errors is a complicated process. The physical understand-
ing of this process is greatly enhanced if it is possible to
develop a simple analytical theory, which although only
an approximation, contains the pertinent features of the
real problem. A major step in this direction was taken
by Hamilton and Melbourne (Ref. 1) in their classical
paper describing the information content of a single
pass of doppler data when the geocentric range rate,
declination, and right ascension may be assumed to be
constant. Curkendall and McReynolds (Ref. 2) extended
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the theory to include first-order temporal variation in
these quantities. The development which will be under-
taken here is a refinement of the Curkendall and
McReynolds approach and not conceptually a new
method. Some new features which are presented are:

(1) Analytical derivation of the partial derivatives of
the geocentric gravitational acceleration with re-
spect to range, declination, and right ascension.

(2) Completely analytical description of errors in the
full spacecraft state produced by station location
errors.
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An attempt is also made to obtain a better idea of how
and when this first-order theory is no longer reliable.

ll. Expansion of the Topocentric Range and
Range Rate in terms of r,/r and z,/r
From the coordinate system shown in F ig. 1, it is

easily seen that the magnitude of the topocentric range
vector p may be written as

p =[x~ ricos ¢)* + (y — r,sin p)* + (z = z)*]2
(1)

For a distant spacecraft the range equation may be
put in a more convenient form by expanding the right-
hand side of Eq. (1) in terms of the small quantities r,/r
and z,/r as given below:

{ r3<x +y, > Zs %
p=r 1—7 7005<p rsm<p s
+lr32|: 1(9:2 y*
2 r? 2 \r2 r"’)
1 xz 2
—E-<F——2cos2<p>——sm2qa]
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2 r T

Deleting terms higher than the first order in ry/r and
z,/r from the above equation and expressing the space-
craft coordinates in terms of a spherical system
result in a very simple approximation for p, which is
shown below. Starting with this equation, techniques may
be developed that are extremely useful in interpreting
various physical situations.

p=71 = [r,cos8cos(p — a) + z,sin §] (3)
where

T = geocentric range

8 = declination

right ascension
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The range rate to the same accuracy may be obtained by
differentiating Eq. (3) with respect to time and is given
below:

,‘,:::r'—zsécoss+r.,(t'p—a')00535iﬂ(<P‘a)

+ 7, 8 sin & cos (¢ — a) 4)

lll. Expansion of the Range Rate to the
First Order in Time

After deriving an expression similar to Eq. (4),
Hamilton and Melbourne (Ref. 1) proceed under the
assumption that #, 3, and « are constant. Curkendall and
McReynolds (Ref. 2) have shown that the analysis is
improved if the spacecraft variables in Eq. (4) are ex-
pressed as first-order expansions in time, as given below:

= f, Tt
§ = 8, + 5t
8§ = & + 5,¢
a = ay+ agt
&= qt+ oant

where a, denotes that the quantity a is evaluated at
t = 0. Substituting the above set of equations into Eq. (4),
and assuming, for the present, that
=@+ gt
yields the following first-order expansion of the topo-
centric range rate in both r./r, z,/r and time:
p(t) = 7o — 2z, 8, cos 8, + 75 (Po — @) COS 8,
X sin (@, + @yt = a)
+ r, 8, sin 8, cos (o + ot — ay)
+ [# + z, 8,2 sin 8, — z, 8, cos 81t
+ rs [ - (“Pﬂ - 2&0) éoSiﬂSo
— @ cos 8,] ¢sin (g, + @ot — ap)
+ Ts [ - (‘;00 _‘&0) &0 COS 80
+ 8% cos 8y + 3 sin 80 £ cos (@ + ot — o)
(5)
This equation is not in a suitable form for analysis be-

cause 7, 8, and &, are not independent of r,, a,, 8, o,
8y, and a,.
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IV. Calculation of r, (§, and &

Before initiating the derivation for 7, §, and &, it is
convenient to obtain some relations between the unit
vectors, i, in the cartesian and spherical coordinate sys-
tems. These relations may be obtained by obtaining from
Fig. 1 the following equations:

i, = cos 8 cos a i, + cos 8 sin i, + sin i,
i« = — sinai, + cos aiy (6)
is = — sin & cos ai, — sin § sin « i, + cos § i;

Since the cartesian coordinate system is assumed to be
an inertial frame of reference,

=i, =i=0
and

i, = 515+ cos 8 &ia
is = — 81i, — sin 8 & ia )

ig = — cos 8 &i, + sinSais
The geocentric range vector r may be written as
r=ri,

Taking the derivative with respect to time and using
Eq. (7) yields

¥ =i, + r(3is + cos § &ia)
Similarly
T o= [F— r (8 + at cos? §)1 i,

+ (28 + ra* sin & cos 8 + 1 8)is |

+ (2t& cos 8 — 2r8 asin § + r cos 8 a)ia (8)
From Fig 2, r may also be written as

r=1,— "I (9)

If both the earth and spacecraft are assumed to move

under the influence of the sun only, the second derivative
of r may be written as

. Iy Te
r = — =
H T 7o

JPL TECHNICAL REPORT 32-1526, VOL. Il

where p is the sun’s gravitational constant. Substituting
Eq. (9) into the above equation gives

. [r (1 1)] 10
S A W (10)

where r, is the earth to sun vector, which in component
form may be written as

Y, = T, COS 8, COS a,i,
+ 7, COs 8, sin a,i, + 7. sin §; iz (11)
where

r, = earth-sun distance

5, = declination of the sun

right ascension of the sun

2
i

Using the inverses of Eq. (6) allows Eq. (11) to be
written as

r, = I, [cos 8 cos &, cos (¢ —a,) + sin 8 sin 8,]i,
+ 1, [— sin 8 cos 8, cos (@ — a,) + c0s & sin §,] is

— 1, COS 8, Sin (@ — a,)ia

Substituting this equation into Eq. (10) results in

. r 1 1
F o= F{[',.;s_—“ (r_ps__-r?‘->< cos § cos d,

X cos (¢ — a,) + sin 8 sin §,> ] i,

1 1 .
| Te F— P < — sin § cos §,

X cos (e — a;) + cos § sin 88>] is

1 1
+ | re\— ——5) < cosd
T Te

X sin (o — .,,>>] ia } (12)
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Comparing the right-hand side of this equation with the
right-hand side of Eq. (8) gives the following expressions
for 7, 8 and & in terms of r, 8, a7 8, and a:

'i=r($2+&2coszb‘)+i"y

. ..
8=—&zsin80058—278+8g (13)

. 7
cosS&=28&sin8—27dcoss+Z£g

where

e[ B o

Ty = i3 rp3 Te F—? < cos COSSS
Xcos(a—-a8+sin85in83>]

" re [ 1 1 .

5, = —n —r:;—? < sin § cos &, cos (¢ — a)
— cos § sin §,

. ref 1 1 i

@y = _‘:U-? e _"—e‘; cos 8, sin (a — ay)

rn = {r* + 1. — 2rr, [cos § cos §, cos (@ = a)

+ sin § sin §,]}'/2 (14)

Finally substituting Eq. (13) into Eq. (5) gives the fol-
lowing approximation of the topocentric range rate:

p=a + b'sin(g, = ay + @ t)
T cos (@) = a0 + @y t) + d't

+ € tsin (g — ap + @, 1)

+ ftcos(go = ay + @, t) (15a)
where
a’ =i, — z, 8, cos 8o
b= r,(¢s — &) cos 8,
=, 8.'. sin §,
80

d’ =1, (8,% + &° cos? o)

+ T + 2z, (éoz sin 8, + a,* cos * §, sin 8,

To . “
+ 2—38,cos 8, — 840 COS 80>

To

. a . 1..0' -
e =r, <— @0 8osin §, + 2 Tan cos §, — bzgo>
0
f=r <— ®o & COS 8, + &3 cos® §,

: o . .
+ 8,%cos 8, — 2 — 8, sin 8, + sin 5, ng>
T

[+)

(15b)

V. Range Rate Partials and the Validity
of the Approximations

From Eq. (15) it is very easy to obtain an approxima-
tion for the partial derivatives of the topocentric range rate
with respect to the spacecraft coordinates at some epoch
7o, 80, @0, 7o, 80, and g, and also with respect to the sta-
tion location coordinates r,, z, and the longitude A, since
as will be shown later 2/6A = 3/3¢. Before any analysis
is performed with partials obtained in this way, it would
be desirable to have some idea of the validity of the ap-
proximation. To obtain a sample of such information, the
procedure outlined in Table 1 was used.

The time behavior of some of the coefficients obtained
by fitting Ap(t), generated by a station longitude error of
10-° rad, is shown in Fig. 3 for a particular Viking type 11
trajectory. To easily see how well the coefficients gen-
erated in this way agree with the corresponding co-
efficients predicted from Eq. (15), Fig. 3 actually plots
the ratio of these two sets of coefficients, or a quantity
which is a function of this ratio.

If the expression given in Eq. (15) were an equality
and not an approximation, the coefficients determined
from the fit should be independent of the amount of
data in the fit and should agree with the coefficients
predicted from Eq. (15). An examination of Fig. 3 shows
that the C and E coefficients determined by the fit are
fairly constant over the 10-day interval and agree reason-
ably well with the coefficients predicted from Eq. (15).
Unfortunately, the B and F coefficients determined
by the fit, although initially agreeing fairly well with
the coefficient predicted from Eq. (15), show a sub-
stantial time variation after a few days. The time
variation of this parameter severely degrades any error
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analysis which involves a station longitude error and the
B and F terms of Eq. (15), when more than a few days
of data are under consideration.

The abnormal behavior of the first point on three of
the curves shown in Fig. 3 probably receives contribu-
tions from both the fact that there are only a small num-
ber of points after the first day, and that the time is not
large enough to give strength to the last three terms.

Computations similar to those used in generating Fig. 3
were made for perturbations in the spacecraft initial
coordinates and the remaining station coordinates.
Table 2 contains the coefficients obtained from fitting
three and ten day’s worth of Ap(t) data generated in this
way. For comparison purposes the corresponding coeffi-
cients predicted by Eq. (15) are also included in Table 2.

An examination of Table 2 shows that for its particular
type of trajectory, an error analysis based upon Eq. (15)
may be very unreliable in several parameters if more
than a few days worth of data is under consideration.

The various sets of Ap(t) used in Table 2 and generated
by changes in spacecraft and station coordinates were
also fitted by the following polynomial:

A+ Bsin{(g—a+¢t) +Ccos{p—a+ ¢t)

+Dt+ Etsin(p —a+ ¢t)

+ Ftcos{p — a + ¢t)

+Gt+ Hesin(p—a+ ¢t)

+ 12 cos{pg —a+ @t)

+ Jsin [2(¢ — « + ¢ )]

+ Kcos [2(¢ — a + ¢t)]

+Ltsin [2(¢ — « + ¢t)]

+ Mtcos [2g — a + pt)]
where the 2(¢ — a + ¢ t) terms were suggested by
Eq. (2). The first six coefficients obtained from this fit
had substantially less time behavior than the coefficients
in Table 2 and the larger coefficients in each case agreed
to at least 4 figures with the value predicted by Eq. (15),

and almost all of the remaining non-zero coefficients
agree to a few percent.
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VI. Selection of the Dominant Terms in
the Range-Rate Approximation

The purpose of finding analytical approximations to
the range, range rate, and their associated partial deriva-
tives with respect to the spacecraft and station coordi-
nates is to gain a better understanding of the physical
situation. If the range-rate approximation given by
Eq. (15) is used, the understanding is clouded by the fact
that almost all of the coefficients in Eq. (15) are func-
tions of almost all of the spacecraft and station coordi-
nates. The ease of understanding would be considerably
improved if it were possible to isolate which terms in
Eq. (15) contribute a negligible amount to an error
analysis and may be deleted. To facilitate such a pro-
cedure, it is convenient to generate a quantity which
compares the change in a particular coefficient of
Eq. (15) due to a change in a particular spacecraft or
station coordinate with the maximum change in this
same coefficient due to a change in any spacecraft or
station coordinate. For example, for the trajectory and
changes in the nominal spacecraft and station coordinates
used in Table 2, the change in e due to a change in r is
Ae(ar) = 8 X 10, and the maximum change in e,
Aemax, due to the change in any of the spacecraft and
station coordinates comes from a change in «, so that the
quantity of interest is Ae(Ar)/Aep.(da) = 0.4. Table 3
gives this ratio for all coefficients and changes in space-
craft or station coordinates for the nominals and changes
used in Table 2.

We will make the rather arbitrary decision that if a
particular element in the above table is less than 5% as
big as the largest element in either its corresponding row
or column, the partial derivative associated with that
element may be ignored in an error analysis. This of
course may change for different trajectories but probably
not substantially. For example, since the (3,2) element in
Table 3 is much less than the largest element in the
AD'/AD o column or Aa row, the 3b/da partial may be
ignored. Using this criterion allows the range-rate ap-
proximation given by Eq. (15) to be considerably simpli-
fied to the form given below:

p=~a’+ b”sin (¢, — a + @ t)
+ ¢”cos (@, — an + @ t) +d”’t
+ e” tsin (@, — oo + @0 t)

a + @ot)

+ f” t cos ((PU - (163)
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a’ =+, — z, 8 cos 8,

b” = r, ¢, cos 8,

c” =0

d” =1, (3, + éo* cOSt 8) + Fp
e’ = —~ r?¢oéosin80

" = = r, @ & cos 8,

. Ty 1 1
Too = = p| == =1 — = — ] < cos 8, cos 8.,
r: T r:

po en

X cos (ay — as) + sin 8, sin 830>] (16b)

and the second term in ¢” is needed only in computing
0p/9%s.

VIl. Modification of the Trigonometric Arguments

The physical understanding which results from the use
of Eq. (16) may be further increased by judiciously
choosing the form of trigonometric arguments used in
this equation. Recall from Eq. (3) that these quantities
had their origin in the term ¢ — «, where ¢ is the angle
between the mean vernal equinox of date and the
meridian of the tracking station as shown in Fig. 4.

The universal time ¢, is related to the quantities in the
above figure through the following equation:

ot, = H + o 12 hl‘S (17)
where the rotation rate of the earth o is

2
86400

w =

= 0.72722 X 10-* rad/sec (18)

and when the mean sun crosses the Greenwich meridian
it is 12:00 universal time. Clearly the right ascension of
the Greenwich meridian as a function of universal time
may be written as

§ = oty + (a0 — 180°) (19)
The right ascension of the mean sun is given by (Ref. 3)
ae = 280°0755426 + 0°98564734 d

+ 2°9015 X 10-13 g (20)

82

where
d = days past Jan. 1, 1950, 0 hrs

The second term in Eq. (20) accounts for the annual
motion of the earth about the sun; the third term is
extremely small and may be neglected. Substituting
Eq. (20) into Eq. (19) yields

6 = (10020755426 + 0298564734 d) + ot,

From this equation it is easily seen that if the time is
measured in units of universal time, the right ascension
of Greenwich may be written as

=0, + 6,t
where
8, = right ascension of Greenwich at some epocht =0
8, = (0.72722 + 0.00198) rad/sec

= 0.7 rad/sec (21)

Clearly, since
=10+

the argument of the trigonometric function in Eq. (18)
may be written as

¢1)—a0+('p()t=00+'l\—ao+égt (22)

Hamilton and Melbourne (Ref. 1) have shown that at
this point in the development it is convenient to specify
a priori information about a and A, and to make the fol-
lowing definitions:

€ = A — \* = (true—a priori) station longitude
€ = ay — @ = (true—a priori) spacecraft
) . (23)
right ascension
E=€ — €
Substituting these equations into Eq. (22) yields
(P()—a0+¢0t=00+/\.*_a0*+€,\—€q+éot
(24)
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This equation may be considerably simplified if the
time ¢ is specified to be measured from a point when
the spacecraft crosses the staiton’s nominal meridian.
Using this particular epoch the first three terms of
Eq. (24) cancel, allowing Eq. (16) to be written as
p=a” + b’sin(f,t + € + c” cos (6, ¢ + ¢
+d”t+ e”tsin (6.t + € + 7t cos (6, ¢ + €

where for this, and all future equations, ¢ = 0 is under-
stood to occur at a nominal meridian crossing.

Since € is small enough so that € is negligible, the
above equation may be rewritten as
p=a’+ (B —ec”)sinft+ (c” +eb”)cosft
+d’t+ (e — ef)tsingt
+ (f"+ e’V tcosft

or using Eq. (15b)

p~a+bsinft+ccosdt+dft
+eétsinét+fétcosét (25a)
where
a = rt, — % 8 cos 8,

b =r,8cos s,

[fode [,sinede [icospde

Jycos*od e

&)=
s |-

Ia

where
o= é(,t

o3 = variance of the white noise associated with the
range-rate measurements

N

number of range-rate data points

f, indicates that the integral extends over the full
tracking interval, but has a non-zero contribution
only when data is,being taken
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Jrede
Josinfede [ysinpcosode [,esinede [,esin®ede
Joecosode [,esinpcos ode f[,ecos® ode
sym. Iretde

c=r,0cos8 [(\ = \*) = (a — )]

- . .1
d = [r, (8% + Go® cOs* 8o) + Tyo] 5

e = —r, {80 sin §, — [(/\ - /\*) —_ (Olo - ao*)]&o cos 80}
f = — 7 {&n cos §, + [(/\ - /\*) - (t!o - ao*)]éo sin 80}
(25b)

where the z, term of the first coefficient is nonnegligible
only for the calculation of 2p/pz;.

VIil. Error Analysis Using the Range-Rate
Approximation

As pointed out by Curkendall and McReynolds (Ref. 2),
any error analysis based upon Eq. (25) proceeds by
treating the coefficients a, b, ¢, d, ¢, and f as data points
which describe the range-rate observable. However,
these “data” points are not independent, and in fact may
be highly correlated. The correlations and appropriate
weights associated with the coefficients may be found by
first taking the partial of § with respect to ¢ - f and
forming the information matrix J, in the usual manner. If
data is taken often enough so that summations may be
represented by integrals, ], may be written as

Jopcospdo
Jresinpcos od e

Joesin pdo

Jvgicos pde
Joe*singcos od g
Jnpicos’ pde

[o¢* sin pd o
I»@*sin® od o

(26)

In using the six coefficients a -> f as data points, the
orbit determination solution filter accepts changes in
these coefficients which have been generated in some
manner, and modifies six parameters from among the
nine spacecraft and station coordinates so that the
range-rate observable is changed as little as possible. For
example, if the effect of the ionosphere on the range-rate
observable could be represented by an error in the ¢
parameter, a solution for the spacecraft state would make
a compensating error in the right ascension of the space-
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craft, so that the value of g(t) is best preserved. Using
the classical least-squares technique this solution pro-
cedure may be represented by the following equation:

Ax = [AT WAL A" W aa (27)
where

Ax = the solution vector for up to six parameters se-
lected from among the spacecraft and station

Aa = a vector representing changes or residuals in the
coefficients @ — f which have been generated in
some manner

W = ], = weighting matrix for the coefficients ¢ — f
which are being treated as data

ca

cX

The matrix of partials, A, is obtained by selecting
columns from the matrix, A*, whose elements are ob-
tained by differentiating Eq. (25b) and which is given

coordinates below:
A ¢(a,b,ed e
TR S ah 8, & T A A
0 0 0 1 0 0 0 0 — 8, sin .|
0 —r,fsins, 0 0 0 0 § cos 8, 0 0
0 0 -1 6 cos 8, 0 0 0 0 rs 6 cos 8, 0
Y /6 ¢/é 0 2y 80/8 21y o cOS? 80/6 0 0 0
0 —ry8,c088, —rsiancosd, 0 —r,sind, 0 —38, sin 8, e &y COS 8, 0
L 0 Ty &, Sin 8, Ty :80 sind, 0 0 —r, COS 8, — G, cos 8, —r, 8, sin 8, 0 J
(28)
where where
¢ = oialor ]+ (8” + & cost 8 ) cos ¢ = — sin § cos 8, cos (@ — a;) + cos § sin §;

n = 8ru/cd o~ 2:'“ &’ cos 8 sin 8

&= iFplia,

The partials of the gravitation acceleration with re-
spect to the position of the spacecraft may be obtained
by using the first and last of Eq. (14) and are

— (2 — 3sin® y,)

po

ory | B < 1 1
3 o ATecos o \Tr T T

ry
- 3—{(ry, — r.cos X,)
r 9

po

a;:y ! I
|
|

oty ' 1 1
~— | = ,r.cos 8, cos §,sin (@ — a,)| — | — — —
aa n . .
po en
Ty

+3T(T“—'

po

re COS X(.):] (29)
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Cos x = cos 8 cos 8, cos (@ — a,) + sin § sin §,
siny = r./r, sin x

x = sun-earth-spacecraft angle

¢ = earth-spacecraft-sun angle

The curves of constant 37,/¢r have been shown before
by Curkendall and McReynolds (Ref. 2), but will be
included here as Fig. 5 for completeness. The curves of
constant 27r,/¢8 and 97,/a are mnot as easily obtained
because of their dependence on 8, §, «, and «,. However,
some idea of the behavior of the constant ¢¥,/28 and
oF,/3e curves may be obtained from Figs. 6 and 7 where
the spacecraft declination has been specified to be zero.
To obtain some feeling of how the gravitational field may
influence the orbit determination solution for various
missions, trajectories representative of Mariner Venus-
Mercury 1973 and Viking 1975 have been included in
Figs. 5, 6, and 7.
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IX. Error Analysis for the Spacecraft State

Almost all orbit determination error analysis has as its
goal an investigation of errors in the spacecraft state.
Using the approximation techniques developed here and
the classical least-squares method, the error analysis of
the full spacecraft state, resulting from range-rate-only
information, would proceed from the following equation:

pe - - -

Ar Aa
A8 ab
o= qargAytATy |2 (60)
AF P ol ad
A Ae
| Aa | af |

where A, is composed of the first six columns of the A*
matrix in Eq. (28). The state covariance is easily found
by taking the inverse of the terms in braces in the above
equation. As before Aa — Af represented changes in the
coefficients ¢ — f produced by some physical phenom-
ena, which degrades the range-rate observable. For ex-

ample, if one wanted to investigate the errors in the
spacecraft state which result from station location errors,
the Aa — Af which reflect this situation would be ob-
tained by multiplying the partials of ¢ — f with respect
to r,, A, z, (ie., the last three columns of A* in Eq. 28)
by ar,, AX, and Az,, respectively.

Since A, is a 6 X 6 matrix when the full spacecraft
state is being included in the solution, the determination
of Ar > Ae is unique and Eq. (30) may be written as
I

Ar

= As_l

Aa

Af

. (Y -

Because of the many zero elements contained in A,, it
may be conveniently inverted. Hence, the changes in the
full spacecraft state which result from changes in the
six parameters describing the range-rate observable may
easily be obtained from the following equation:

i T i 2 o e a . 2 o 5 ad . 9 .a . T i T
N . ré* sin* § cos § + —a—s-sms — 2r87 cos . sin 8 — 2rad cos® 8 gr, oréé 96 cos Sal V
ad/or sin® 8 ¢d/or cos § sin § od/er od/ersin$  3d/or
A 0 — 1/sin § 0 0 0 0 Abi
1
Aa| = e 0 0 — 1/cos § 0 0 0 Ac
rs
AF ér, 0 0 0 0 0 ad
. . ) a i
Ad 0 8/tan 8 sin § P 0 g/sin & 0 Ae
LAoZ LO a/cos § — 3 tan 8/cos § 0 0 — 6/cos § LAf_J
(31)
[ as] [ aa]
When a range point is available in addition to the range- Aa ab
rate data, a cursory error analysis for the 8, o, 7, §, AF . . Ac
portion of the spacecraft state may be performed by AS ={A7], AT A Ad (32)
assuming the geocentric range to be known and deleting Ad Ae
it from the solution. This technique is expressed in the af
following equation: Lo Lo 4
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where A, is a 6 X 35 matrix composed of the second
through sixth columns of A* contained in Eq. (28). This
system is over-determined and the solution must be
obtained by using least-squares techniques.

The classical ATWA form of the least-squares problem
has been used in the last two sections because it was
felt that it was probably very familiar to most potential
readers. However, the inversion of A”WA, generated by
using the approximation discussed here may have nu-
merical difficulties which would require recasting the
problem in its square-root form.

X. Summary and Discussion

The preceding sections have been concerned with
arriving at a first-order expansion of the topocentric
range rate in terms of r,/r, z,/r, and time, which may be
put in a form which is convenient to use for error
analysis. Although at times the development was some-
what laborious and involved, the resulting error analysis

procedure is quite easy to use. For example, over the
range of validity of the approximations, a great deal of
the state only-range rate only error analysis can be per-
formed analytically. Although this technique may be used
to obtain quantitative estimates regarding the inherent
accuracy of particular orbit determination problems, it
should always be borne in mind that the primary reason
for undertaking the development was to provide a vehicle
which can promote a better physical understanding of
the orbit determination process.

The limiting feature of this approximation technique is
the relatively short time periods over which it is reliably
applicable. For example, for the Viking trajectory used
here as an example, the method is severely degraded in
many of the parameters after only a few days. This fea-
ture is particularly irritating when one wants to deter-
mine the information content contained within long arcs
of data. It may be possible to develop techniques similar
to the one achieved here, but applicable to long arc
solutions, by using the closed form f and g expansions of
celestial mechanics.
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Table 1. Procedure for verifying Eq. (15)

Step

Procedure

From a nominal trajectory, with only the mass of the sun 7=
0, obtain the topocentric range rate from one station every
hour for 10 days.

Same as step 1, except perturb either the initial conditions
of the spacecraft or the station location coordinates by some

amount.

Difference the range rate values obtained in steps 1 and 2
to obtain Ap(t).

Starting with one day’s data and then increasing the data
arc a day at a time, make a least-squares fit of Aj(H) to
the following polynomiaf:

A+ Bsin(p—a+e¢h) + Ccos(p— a+¢f)+ Dt
+ Etsin(p— a+ o) + Fteos(p— a + ¢h
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Table 3. The quantity used in selecting the dominate terms for error analysis

Coordinate Aa’/Ad max Ab’'/Ab  ax Ac’ /A wnx Ad'/Ad s Ae’ /Al s AF /AF max
Ar - - - 0.4 1X 107 2% 107
A 0.4 X 107 0.4 0.3 X 107" 1 0.4 0.2
Aa - 0.6 X 107 1 1 1 0.5 X 107
Ar 1 - - 0.4 X 10°° 03 X 10° 0.2 X 10t
A 0.4 X 107° - 0.7 X 107 0.8 X 107 0.3 X 107" 0.7 X 107
Aa - 0.6 X 107 - 2X 10" 03 X 10° 0.5 X 107"
Ar, - 1 0.3 X 107 - 0.2 X 10° 1
AN - 0.6 X 107 1 - 1 0.5 X 107
Az, 0.2 x 10° — - 0.6 X 107 - -
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Fig. 2. Relative positions of the sun, earth, and spacecraft
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